LNP 晶体中 Nd³⁺ 离子的电偶极跃迁强度

吴光照 张秀荣

(中国科学院上海光机所)

提要:本文给出了强度参量 Ωt和跃迁几率等数据。

The electric dipole transition intensity of the Nd³⁺ ions in LNP crystals

Wu Guangzhao Zhang Xiurong

(Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

Abstract: The transition intensity parameters Ω_i and the transition probabilities of the Nd³⁺ ions in LNP crystals have been calculated.

LNP(四磷酸钕锂)晶体是一种很有希望 的微小型激光晶体。自1974年以来,人们已 经对 LNP 晶体的生长、各种性能做了一些研 究。本文给出的是此种晶体中 Nd³⁺ 离子的 跃迁特性,顺便讨论几个有关的问题。

一、强度参量和辐射跃迁几率

Nd³⁺(4f³组态)在晶场微扰下产生电偶极跃迁的强度可用三参量的 Judd 公式计算^{tu}:

 $S_{JJ'} = \sum \Omega_t |\langle \psi_J \| U^{(t)} \| \psi_{J'} \rangle|^2, \qquad (1)$

式中 S_{JJ} 为跃迁强度(或谱线强度); $\langle \psi_J \| U^{(+)} \| \psi_J \rangle$ 为两个J——簇态之间的跃迁 矩阵元(即约化矩阵元或"两竖矩阵元"); $Q_{i=2,4,6}$ 为强度参量。

(1) 式中的矩阵元是可计算的,因而 Q₄ 能从实验吸收谱上首先拟合出来。详细的步 骤请参阅文献[2]。我们用 SP-700 分光光 度计测量了 10⁴~3×10⁴ 厘米⁻¹ 波段的吸收 谱(见图 1),将公式 (1) 拟合到 Nd³⁺ 的九个

图 1 LNP 吸收谱(样品厚度 0.2 毫米, Nd³⁺ 浓度 4.37×10²¹/厘米³)

吸收带,得到了最佳 Ω_t 参量:

 $\Omega_2 = 2.0 \times 10^{-20} \ \mathbb{R}^{*2},$ $\Omega_4 = 4.3 \times 10^{-20} \ \mathbb{R}^{*2},$

在 LNP 中, Nd³⁺ 基项 ⁴I_{9/2} 分裂总共只有 326 厘米⁻¹⁽³⁾, 所以, 用三参量公式计算不会 造成系统误差。

有了Ω:参量值, 荧光分支比β, 和辐射寿命 τ, 都可算出。 Yamada^[3] 测量过

收稿日期: 1979年11月19日。

. 12 .

⁴ $F_{3/2}$ →⁴ $I_{3/2}$, ⁴ $I_{11/2}$ 两个荧光带的分支比; Hong^[4]报导了 ⁴ $F_{3/2}$ 态的"零浓度寿命",完 整的分支比数据和辐射寿命的数据并没有报 导。

表1是我们对辐射跃迁几率及荧光分支 比的计算结果。从这些几率之和得到辐射寿 命为 320 微秒,与文献[4]的实测"零浓度寿 命"一致。 说明 Nd³⁺ 完全取代稀土格位后, 辐射寿命不变^[8]。

表1 辐射跃迁几率和荧光分支比的计算值

荧光跃迁 <i>J→J</i> ′	波长(微米)	强度 S _{JJ} , 10-20厘米 ²	几率 A33' 秒-1	分支比 β _J ,
⁴ <i>F</i> _{3/2} → ⁴ <i>I</i> _{9/2}	~0.875	1.32	1260	0.4
${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$	~1.055	3.00	1520	0.48
${}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2}$	~1.35	1.26	363	0.12
${}^{4}F_{3/2} \rightarrow {}^{4}I_{15/2}$	~1.9	0.10	9	<0.003

二、激发态吸收几率

当亚稳态被占据时,辐射的吸收可能从 这个亚稳态上发生,叫做激发态吸收。激光 器中实际存在的光场计有:荧光,它们的波长 是 0.875 微米、1.055 微米和1.35 微米;激 光,它们的波长是 1.047 微米;以及泵浦光。 做腔内倍频时,还有 0.524 微米的二次谐波 场。因此,可能被吸收的辐射就只有这些波 长。

始于⁴F_{3/2}态的激发态吸收是一种损耗, 它减少了反转粒子数。这种吸收在 YAG: Nd³⁺ 中已经有所考虑,在高钕浓度的 LNP 晶体中其影响可能更为明显。定量地考虑 这一问题是按以下步骤计算吸收跃迁几率 *A*_{1/3}//;

将居间耦合本征函数 |ψ_J > 按 (S, L)
耦合图象中的基展开,即

 $|\psi_J\rangle = \sum_{S,L} C(S, L) \cdot |SLJ\rangle,$ (2)

2) 计算如下形式的矩阵元,

 $\langle S'L'J' \| U^{(t)} \| S'L''J'' \rangle = (-1)^{S'+t+J'+L''} \\ \cdot [(2J'+1)(2J''+1)]^{1/2} \\ \cdot \left\{ \begin{matrix} L'J'S' \\ J''L''t \end{matrix} \right\} \cdot \langle S'L' \| U^{(t)} \| S'L'' \rangle,$ (3)

3) 将(3)式算出的矩阵元加起来,然后
平方;

4) 计算几率
$$A_{J'J''} = \frac{64\pi^4 e^2}{3h(2J'+1)\lambda^3} \cdot \frac{n(n^2+2)^2}{9} \cdot S_{J'J''},$$
(4)

表 2 的最后一列是我们算得的激发态吸 收几率;第一列和第二列指出相应的跃迁和 波长;所用的 $U^{(t)}$ 矩阵元(第三列)有的已被 人算过,可借用。而 ${}^{4}F_{3/2} \rightarrow {}^{2}F_{5/2}, {}^{2}F_{7/2}$ 的 $U^{(t)}$ 矩阵元没人算过,我们用以下波函数⁽⁵⁾ 算了这些矩阵元;

 $+ |-0.0958^{4}G\rangle + |0.3900^{2}D2\rangle$

 $+ |0.5482^{2}F1\rangle + |0.7309^{2}F2\rangle;$

表 2 激发态吸收几率的计算值 (初态为 $\langle \psi_{3'} | = \langle {}^{4}F_{3/2} | \rangle$

终态	跃迁	Ū(t)			跃迁 强度	跃迁
¥ <i>J''</i>	(微米)	Ū(3)	U ⁽⁴⁾	U(6)	(10 ⁻²⁰ 厘米 ²)	(秒-1)
² K _{13/2} ⁴ G _{7/2,9/2}	~1.35	0.127*	0.062*	0*	0.520	150
² K _{15/2} ² G1 _{9/2} ² D _{3/2}	~1.055	0*	0.019*	0.027*	0.241	122
4D7/2	0.524	0.0017*	0.1*	0*	0.430	1940
² F _{5/2}	~0.35	0.008	0.0004	0	0.018	270
2F7/2	~0.34	0.001	0	0	0.002	33

注: |<⁴F_{3/2}||U^(t)||ψ_{J''}>|² 简写为 U^(t), 单位为 10⁻²⁰ 厘 米²;带"*"号者取自文献[7]。

. 13 .

 $|{}^{2}F_{7/2}\rangle = |-0.0942^{4}D\rangle + |-0.0409^{4}F\rangle$

 $+ \ket{0.0641^4G} + \ket{-0.5239^2F1}$

 $+ |-0.8398^{2}F2\rangle + |0.0702^{2}G1\rangle$

 $+ |0.0248^{2}G2\rangle_{o}$

表 2 中涉及的光谱项的次序和大概位置可在 文献[6]中找到。

三、与电偶极跃迁强度 有关的几个问题

简单讨论 LNP 中的几个问题, 以说明这 些数据的用途。

LNP 晶体中 Nd³⁺ 荧光猝灭相当弱,主 要是经过 ${}^{4}I_{15/2}$ 能级的交叉弛豫过程。我们 已经给出了全部四个荧光带的分支比(见表 1)。其中 ${}^{4}F_{3/2} \rightarrow {}^{4}I_{15/2}$ 的分支比小于 0.003, 也就是说,很难用电偶极矩把 ${}^{4}F_{3/2} \rightarrow {}^{4}I_{15/2}$ 联系起来,经过 ${}^{4}I_{15/2}$ 能级的偶极-偶极交叉 弛豫率不可能是大的。这是 LNP 弱 猝灭的 原因之一。

大家知道,高钕浓度微型激光晶体中还 有一个现象,即⁴ $F_{3/2}$ 态的荧光寿命随泵浦水 平的增大而明显地减小。这个现象应从激发 态吸收加以解释。确切地说,应从激发态的 "复合弛豫过程"来解释。从表2看到,值得 重视的跃迁发生在 ${}^{4}F_{3/2} \rightarrow {}^{2}G1_{9/2}, {}^{4}G_{7/2}$ 能级 组之间,它们分别与1.055 微米和1.35 微米 荧光相对应的跃迁共振。两个 Nd³⁺离子的 这种共振过程造成 ${}^{4}F_{3/2}$ 态的有效猝灭,其速 率与 ${}^{4}F_{3/2}$ 态上的粒子数成正比,因而与泵浦 水平成正比。泵浦水平高(例如用其它激光 器的激光泵浦),荧光寿命就会下降。引用 LNP 荧光寿命数据时要注意,不同的激发条

14 .

件可以测得不同的寿命。如果是设计LNP 激光器,需采用强激发条件下的数据,大约是 100 微秒;如果是研究LNP的荧光猝灭机 理,则应采用弱激发下的数据,大约τ≈135 微秒(室温)。

LNP 的一个激光波长是 1.047 微米。激 光运转时,由于激发态吸收而造成的那部分 内耗,可用表 2 中 1.055 微米荧光带被吸收 的几率,换算成吸收系数而做出定量的估计。

 ${}^{2}F_{5/2}$ 态是 Nd³⁺ 离子的一个更高的亚稳 态。从这个能级会发出可见荧光。基态到这 个态的吸收是无用吸收,而 ${}^{4}F_{3/2}$ 到这个态的 吸收(光子能量约 28500 厘米⁻¹)意味着 ${}^{4}F_{3/2}$ 态的退激发。所以,泵浦光中短于 3500 埃的 紫外线特别有害。此外,做腔内倍频时,反方 向的倍频光(0.524 微米)最好不再通过 LNP 的活性区,因为 0.524 微米感生的激发态吸 收是很大的(见表 2),会使 LNP 的 增益下 降。

本工作所用的晶体由我所晶体生长小组 提供,在此表示感谢。

参考文献

- [1] B. R. Judd; Phys. Rev., 1962, 127, 750~761.
- [2] 吴光照;《发光与显示》, 1980, 4, 31.
- [3] Tomoaki Yamada et al.; IEEE J. Quant. Electr., 1975, **QE-11**, No. 7, 330.
- [4] H. Y-P. Hong; Mat. Res. Bull., 1976, 11, No. 5, 461.
- [5] K. Rajnak; J. Chem. Phys., 1965, 43, No. 3, 847.
- [6] W. T. Carnall et al.; J. Chem. Phys., 1968, 49, No. 10, 4430.
- [7] W. F. Krupke; *IEEE J. Quant. Electr.*, 1971, QE-7, No. 4, 153.
- [8] F. Auzel; IEEE J. Quant. Electr., 1976, QE-12, No. 4, 258.